Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.094
Filtrar
1.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743760

RESUMO

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.


Assuntos
Comunicação Celular , Galinhas , Infecções por Coronavirus , Redes Reguladoras de Genes , Vírus da Bronquite Infecciosa , Análise de Célula Única , Animais , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Análise de Sequência de RNA , Células Epiteliais/virologia , Células Epiteliais/metabolismo
2.
Virology ; 595: 110094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692133

RESUMO

Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.


Assuntos
Galinhas , Vacinas contra Influenza , Influenza Aviária , MicroRNAs , PTEN Fosfo-Hidrolase , Estresse Fisiológico , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/virologia , Vacinas contra Influenza/imunologia , Influenza Aviária/virologia , Influenza Aviária/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Tolerância Imunológica , Transdução de Sinais , Vírus da Influenza A/imunologia
3.
PLoS One ; 19(4): e0302555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683795

RESUMO

Clostridial dermatitis (CD), caused by Clostridium septicum, is an emerging disease of increasing economic importance in turkeys. Currently, there are no effective vaccines for CD control. Here, two non-toxic domains of C. septicum alpha toxin, namely ntATX-D1 and ntATX-D2, were identified, cloned, and expressed in Escherichia coli as recombinant subunit proteins to investigate their use as potential vaccine candidates. Experimental groups consisted of a Negative control (NCx) that did not receive C. septicum challenge, while the adjuvant-only Positive control (PCx), ntATX-D1 immunization (D1) and ntATX-D2 immunization (D2) groups received C. septicum challenge. Turkeys were immunized subcutaneously with 100 µg of protein at 7, 8 and 9 weeks of age along with an oil-in-water nano-emulsion adjuvant, followed by C. septicum challenge at 11 weeks of age. Results showed that while 46.2% of birds in the PCx group died post-challenge, the rate of mortality in D1- or D2-immunization groups was 13.3%. The gross and histopathological lesions in the skin, muscle and spleen showed that the disease severity was highest in PCx group, while the D2-immunized birds had significantly lower lesion scores when compared to PCx. Gene expression analysis revealed that PCx birds had significantly higher expression of pro-inflammatory cytokine genes in the skin, muscle and spleen than the NCx group, while the D2 group had significantly lower expression of these genes compared to PCx. Peripheral blood cellular analysis showed increased frequencies of activated CD4+ and/or CD8+ cells in the D1 and D2-immunized groups. Additionally, the immunized turkeys developed antigen-specific serum IgY antibodies. Collectively, these findings indicate that ntATX proteins, specifically the ntATX-D2 can be a promising vaccine candidate for protecting turkeys against CD and that the protection mechanisms may include downregulation of C. septicum-induced inflammation and increased CD4+ and CD8+ cellular activation.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Clostridium septicum , Dermatite , Doenças das Aves Domésticas , Proteínas Recombinantes , Perus , Animais , Perus/imunologia , Clostridium septicum/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/imunologia , Infecções por Clostridium/veterinária , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Toxinas Bacterianas/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Dermatite/prevenção & controle , Dermatite/imunologia , Dermatite/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Imunização
4.
Vaccine ; 42(15): 3410-3419, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38641498

RESUMO

The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.


Assuntos
Anticorpos Antivirais , Galinhas , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Eliminação de Partículas Virais , Animais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Galinhas/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Eliminação de Partículas Virais/imunologia , Organismos Livres de Patógenos Específicos , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Imunidade Celular , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Meleagrídeo 1/genética , Vacinação/métodos , Imunidade Humoral , Vetores Genéticos/imunologia , Imunogenicidade da Vacina , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
5.
Vet Microbiol ; 293: 110094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636175

RESUMO

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.


Assuntos
Infecções por Birnaviridae , Proteínas do Capsídeo , Galinhas , Evasão da Resposta Imune , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Animais , Galinhas/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/imunologia , China , Anticorpos Antivirais/imunologia , Mutação , Vacinas Virais/imunologia , Proteínas Estruturais Virais
6.
Viruses ; 16(4)2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675911

RESUMO

Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.


Assuntos
Galinhas , Imunidade Inata , Doenças das Aves Domésticas , Infecção por Zika virus , Zika virus , Animais , Galinhas/virologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Suscetibilidade a Doenças , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Fatores Etários , Anticorpos Antivirais/sangue , RNA Viral/genética
7.
Viruses ; 16(4)2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675946

RESUMO

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Assuntos
Galinhas , Infecções por Coronavirus , Perfilação da Expressão Gênica , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Traqueia , Animais , Traqueia/virologia , Traqueia/imunologia , Galinhas/virologia , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Células Epiteliais/virologia , Células Epiteliais/imunologia , Transcriptoma , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Replicação Viral , Organismos Livres de Patógenos Específicos
8.
Int J Biol Macromol ; 269(Pt 1): 131807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670189

RESUMO

Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1ß, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.


Assuntos
Galinhas , Coccidiose , Eimeria tenella , Perfilação da Expressão Gênica , MicroRNAs , Doenças das Aves Domésticas , Animais , MicroRNAs/genética , Coccidiose/veterinária , Coccidiose/imunologia , Coccidiose/genética , Coccidiose/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Citocinas/metabolismo , Citocinas/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/parasitologia , Transcriptoma , Ceco/parasitologia , Regulação da Expressão Gênica , Linhagem Celular , Transdução de Sinais
9.
Avian Dis ; 68(1): 10-17, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38687102

RESUMO

The relationship between passive immunity and the development of false layer syndrome (FLS) and its associated lesions was investigated in this study by comparing the long-term reproductive effects of an infectious bronchitis virus (IBV) DMV/1639 wild-type strain and the GA08 vaccine in birds with and without maternal antibodies. There was a clear protective effect provided by maternal antibodies against both the early vaccination and challenge. It was also observed that vaccination at an early age, in the absence of maternal antibodies, can induce reproductive issues, such as reduced egg production and FLS-associated lesions (e.g., cystic oviduct and egg yolk coelomitis). This might indicate that maternal antibodies and the timing of IBV infection are more important in the generation of FLS than the IBV strain type.


Mitigación del síndrome de la falsa ponedora mediante anticuerpos maternos contra el virus de la bronquitis infecciosa. En este estudio se investigó la relación entre la inmunidad pasiva y el desarrollo del síndrome de la falsa ponedora (FLS) y sus lesiones asociadas comparando los efectos reproductivos a largo plazo de una cepa de tipo silvestre DMV/1639 del virus de la bronquitis infecciosa (IBV) y la cepa vacunal GA08, en aves con y sin anticuerpos maternos. Hubo un claro efecto protector proporcionado por los anticuerpos maternos tanto contra la vacunación temprana como contra el desafío. También se observó que la vacunación a una edad temprana, en ausencia de anticuerpos maternos, puede inducir problemas reproductivos, como una reducción de la producción de huevo y lesiones asociadas al síndrome de la falsa ponedora (p. ej., oviducto quístico y celomitis de yema de huevo). Esto podría indicar que los anticuerpos maternos y el momento de la infección por el virus de la bronquitis infecciosa son más importantes en la generación del síndrome de la falsa ponedora que el tipo de cepa del virus de la bronquitis infecciosa.


Assuntos
Anticorpos Antivirais , Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vírus da Bronquite Infecciosa/imunologia , Animais , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Feminino , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Imunidade Materno-Adquirida , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem
10.
Poult Sci ; 103(5): 103547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428353

RESUMO

Infectious bursal disease (IBD) significantly affects the poultry industry, causing substantial economic losses. This study aimed to investigate the effects of ghrelin on chicks infected with an attenuated virus strain of IBDV (aIBDV). Chicks were divided into 3 groups: a control group (group I), an aIBDV infection group (group II), and a ghrelin + aIBDV infection group (group III). Mice in groups II and III were fed until they reached 19 d of age and then inoculated with aIBDV to establish a subclinical infection model. Group III received an intraperitoneal injection of 0.5 nmol/100 g ghrelin from d 17 to 23. The present study utilized paraffin sectioning, H&E staining, and immunohistochemical staining to examine the effects of ghrelin on the bursa of fabricius and cecum tonsils in aIBDV-infected chicks. The results indicated that at 3 d postinfection (dpi), the average body weight of group III was significantly greater than that of group II (P < 0.05). At 3 and 7 dpi, the proportion of large lymphoid follicles in the bursa of fabricius in group III was notably greater than that in group II (P < 0.05). aIBDV infection resulted in bleeding, edema, and fibrosis in the cecal mucosal layer of chicks, but ghrelin administration mitigated these pathological changes. At 3 and 7 dpi, the thickness of the lamina propria in the cecal tonsils of group III was significantly lower than that in the cecal tonsils of group II (P < 0.05). Additionally, the percentage of large lymphoid follicles in the cecal tonsils of group III was significantly greater than that in group II at 3 and 5 dpi (P < 0.05). There were significantly fewer macrophages in the cecal tonsils of group III than in those of group II at 1, 3, and 5 dpi (P < 0.05). In conclusion, ghrelin supplementation improved performance and mitigated bursal atrophy in aIBDV-infected chicks. It also reduced histological lesions and immune responses in the cecum tonsil. Notably, the reduction in macrophages in the cecum tonsil following ghrelin administration may decrease the risk of aIBDV spread.


Assuntos
Infecções por Birnaviridae , Bolsa de Fabricius , Ceco , Galinhas , Grelina , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Vírus da Doença Infecciosa da Bursa/fisiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Grelina/administração & dosagem , Grelina/farmacologia , Bolsa de Fabricius/virologia , Bolsa de Fabricius/efeitos dos fármacos , Ceco/virologia , Masculino
11.
Poult Sci ; 103(5): 103637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518665

RESUMO

To investigate the potential protective effect of prior cold stimulation on broiler intestine induced by acute cold stress (ACS). A total of 384 one-day-old broilers were divided into control (CON), ACS, cold stimulation Ⅰ (CS3+ACS), and cold stimulation Ⅱ (CS9+ACS) groups. Broilers in CON and ACS groups were reared normally, and birds in CS3+ACS and CS9+ACS groups were reared at 3℃ and 9℃ below CON group for 5 h, respectively, on alternate days from d 15 to 35. Broilers in ACS, CS3+ACS, and CS9+ACS groups were subjected to 10℃ for 24 h on d 43. Eventually, small intestine tissues were collected for histopathological observation and indexes detection. The results showed that intestinal tissues in all ACS-broilers exhibited inflammatory cell infiltrates, microvilli disruption, reduced villus length in jejunum and increased crypt depth in jejunum and ileum. Whereas these phenomena were relatively light in CS3+ACS group. Compared to CON group, mRNA expression of the TLR4/MyD88/NF-κB pathway-related genes (TLR4, MyD88, NF-κBp65, COX-2, iNOS, PTGEs, TNF-α), Th1/Th17-derived cytokines (IL-1ß, IL-2, IL-8, IL-12, IFN-γ, IL-17), and HSPs (HSP40, HSP60, HSP70, HSP90) was upregulated (P < 0.05), and that of Th2-deviated cytokines (IL-4, IL-6, IL-10, IL-13) and IκBα was downregulated (P < 0.05) in small intestine in almost all ACS-broilers. Compared to ACS group, mRNA expression of most of the TLR4/MyD88/NF-κB pathway-related genes, Th1/Th17-derived cytokines, and HSPs was downregulated and that of Th2-derived cytokines was upregulated in CS3+ACS group (P < 0.05). Protein expression levels of TLR4, MyD88, p-p65/p65, p-IκBα/IκBα, IKK, TNF-α, IL-1ß, IL-10, and HSPs were similar to their mRNA expression. The concentration of sIgA and activities of CAT, SOD, and GSH-px were decreased and MDA and H2O2 were increased in ACS and CS9+ACS groups compared to CON group (P < 0.05). Therefore, cold stress caused oxidative stress and inflammation, leading to gut immune dysfunction; while mild cold stimulation at 3℃ below normal rearing temperature alleviated cold stress-induced intestinal injure and dysfunction by modulating the TLR4/MyD88/NF-κB pathway in broilers.


Assuntos
Proteínas Aviárias , Galinhas , Fator 88 de Diferenciação Mieloide , NF-kappa B , Doenças das Aves Domésticas , Receptor 4 Toll-Like , Animais , Galinhas/fisiologia , Doenças das Aves Domésticas/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Resposta ao Choque Frio , Inflamação/veterinária , Inflamação/metabolismo , Transdução de Sinais , Masculino , Temperatura Baixa , Distribuição Aleatória
12.
Res Vet Sci ; 172: 105241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555776

RESUMO

Necrotic enteritis caused by Clostridium perfringens (CP), is a common enteric disease of poultry that has been previously controlled by in-feed antibiotics. However, due to the rapid emergence of antimicrobial resistance, alternatives to antibiotics such as probiotics have received considerable attention because of their immunomodulatory and intestinal health benefits. The present study investigated the effects of probiotic lactobacilli on gut histomorphology and intestinal innate responses in chickens. Day-old male broiler chickens were treated with 1 × 107 or 1 × 108 colony-forming units (CFU) of a lactobacilli cocktail on days 1, 7, 14, and 20 post-hatch, while control groups were not treated with lactobacilli. On day 21, birds in all groups (except the negative control) were challenged with 3 × 108 CFU of CP for 3 days. Intestinal tissue samples were collected before and after the CP challenge to assess gene expression and for histomorphological analysis. Lactobacilli treatment at a dose of 1 × 108 CFU conferred partial protection against NE by lowering lesion scores, increasing villus height in the ileum and reducing crypt depth in the jejunum. In addition, 1 × 108 CFU of lactobacilli enhanced the expression of Toll-like receptor (TLR) 2, interferon-gamma (IFN-γ), interleukin (IL)-10, IL-12, and IL-13 in both the jejunum and ileum at different timepoints and subsequently decreased the expression of transforming growth factor beta (TGF-ß) and IL-1ß post-CP challenge. In conclusion, the results indicate that treatment with lactobacilli mitigated NE in a dose-dependent manner via improvement of intestinal morphology and modulation of innate immune response in chickens.


Assuntos
Galinhas , Infecções por Clostridium , Clostridium perfringens , Imunidade Inata , Lactobacillus , Doenças das Aves Domésticas , Probióticos , Animais , Galinhas/imunologia , Galinhas/microbiologia , Clostridium perfringens/fisiologia , Masculino , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Intestinos/microbiologia , Enterite/veterinária , Enterite/microbiologia , Enterite/imunologia
13.
Poult Sci ; 103(5): 103569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447310

RESUMO

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry. We reported earlier that the Salmonella enteritidis (SE) immunogenic outer membrane proteins (OMPs) and flagellin (FLA) entrapped in mannose chitosan nanoparticles (OMPs-FLA-mCS NPs) administered prime-boost (d-3 and 3-wk later) by oral inoculation elicits mucosal immunity and reduces challenge SE colonization by over 1 log10 CFU in birds. In this study, we sought to evaluate whether the SE antigens containing OMPs-FLA-mCS NPs vaccine induces cross-protection against Salmonella typhimurium (ST) in broilers. Our data indicated that the OMPs-FLA-mCS NPs vaccine induced higher cross-protective antibody responses compared to commercial Poulvac ST vaccine (contains a modified-live ST bacterium). Particularly, OMPs-FLA-mCS-NP vaccine elicited OMPs and FLA antigens specific increased production of secretory IgA and IgY antibodies in samples collected at both post-vaccination and post-challenge timepoints compared to commercial vaccine group. Notably, the vaccine reduced the challenge ST bacterial load by 0.8 log10 CFU in the cecal content, which was comparable to the outcome of Poulvac ST vaccination. In conclusion, our data suggested that orally administered OMPs-FLA-mCS-NP SE vaccine elicited cross protective mucosal immune responses against ST colonization in broilers. Thus, this candidate vaccine could be a viable option replacing the existing both live and killed Salmonella vaccines for birds.


Assuntos
Galinhas , Quitosana , Proteção Cruzada , Nanopartículas , Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Salmonella enteritidis , Salmonella typhimurium , Animais , Galinhas/imunologia , Salmonella enteritidis/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/imunologia , Quitosana/administração & dosagem , Quitosana/farmacologia , Vacinas contra Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem , Nanopartículas/administração & dosagem , Salmonella typhimurium/imunologia , Administração Oral , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
14.
Poult Sci ; 103(5): 103652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537405

RESUMO

Mycoplasma gallisepticum (MG) is a highly contagious avian respiratory pathogen characterized by rapid spread, widespread distribution, and long-term persistence of infection. Previous studies have shown that chicken macrophage HD11 cells play a critical role in the replication and immunomodulation of MG. Macrophages are multifunctional immunomodulatory cells that polarize into different functions and morphologies in response to exogenous stimuli. However, the effect of MG infection on HD11 polarization is not well understood. In this study, we observed a time-dependent increase in both the expression of the MG-related virulence protein pMGA1.2 and the copy number of MG upon MG infection. Polarization studies revealed an upregulation of M1-type marker genes in MG-infected HD11 cells, suggesting that MG mainly induces HD11 macrophages towards M1-type polarization. Furthermore, MG activated the inflammatory vesicle NLRP3 signaling pathway, and NLRP3 inhibitors affected the expression of M1 and M2 marker genes, indicating the crucial regulatory role of the NLRP3 signaling pathway in MG-induced polarization of HD11 macrophages. Our findings reveal a novel mechanism of MG infection, namely the polarization of MG-infected HD11 macrophages. This discovery suggests that altering the macrophage phenotype to inhibit MG infection may be an effective control strategy. These findings provide new perspectives on the pathogenic mechanism and control measures of MG.


Assuntos
Galinhas , Macrófagos , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Mycoplasma gallisepticum/fisiologia , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Linhagem Celular
15.
Poult Sci ; 103(5): 103609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547541

RESUMO

Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.


Assuntos
Ceco , Galinhas , Microbioma Gastrointestinal , Vírus da Doença de Newcastle , Vacinas Virais , Animais , Galinhas/imunologia , Galinhas/genética , Galinhas/microbiologia , Feminino , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/imunologia , Ceco/microbiologia , Ceco/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia , Doença de Newcastle/imunologia , Vacinação/veterinária , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
16.
Poult Sci ; 103(5): 103621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507829

RESUMO

In the large poultry industry, where farmed chickens are fed at high density, the prevalence of pathogens and repeated vaccinations induce immune stress, which can significantly decrease the production performance and increase the mortality. This study was designed to shed light on the molecular mechanisms and metabolic pathways involved in immune stress through an in-depth analysis of transcriptomic and metabolomic changes in jejunum samples from the broilers. Two groups were established for the experiment: a control group and an LPS group. LPS group received an intraperitoneal injection of LPS solution at a dose of 250 µg per kg at 12, 14, 33, and 35 d of age, whereas the control group received a sterile saline injection. The severity of immune stress was assessed using the Disease Activity Index. A jejunal section was collected to measure the intestinal villus structure (villus length and crypt depth). RNA sequencing and metabolomics data analysis were conducted to reveal differentially expressed genes and metabolites. The results showed that the DAI index was increased and jejunal villus height/crypt depth was decreased in the LPS group. A total of 96 differentially expressed genes and 672 differentially accumulating metabolites were detected in the jejunum by LPS group compared to the control group. The comprehensive analysis of metabolomic and transcriptomic data showed that 23 pathways were enriched in the jejunum and that appetite, nutrient absorption, energy and substance metabolism disorders and ferroptosis play an important role in immune stress in broilers. Our findings provide a deeper understanding of the molecular and metabolic responses in broilers to LPS-induced immune stress, suggesting potential targets for therapeutic strategies to improve the production performance of broiler chickens.


Assuntos
Galinhas , Jejuno , Estresse Fisiológico , Transcriptoma , Animais , Galinhas/fisiologia , Galinhas/imunologia , Galinhas/genética , Jejuno/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Metaboloma , Masculino , Metabolômica , Perfilação da Expressão Gênica/veterinária
17.
Am J Vet Res ; 85(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422614

RESUMO

OBJECTIVE: To investigate inflammatory responses to lipopolysaccharide (LPS) injection in layers. ANIMALS: 33 40-week-old laying hens were used. METHODS: 30 laying hens were divided into 2 groups: the first group was injected with 8 mg/kg LPS, while the second group was injected with sterile saline. At the start of the study, 3 birds served as a baseline and were used as the time 0 controls for both the saline and LPS-treated groups. Blood and spleen tissues were collected at 0 (before) and 1, 2, 3, 4, and 6 hours after injection. RESULTS: LPS administration increased splenic mRNA levels of IL-1ß, IL-2, IL-6, IL-8, IL-10, interferon-γ, and tumor necrosis factor-α (P < .001) and serum IL-6 levels (P < .01) compared to saline injection. The mRNA expression of most cytokine genes increased rapidly toward peak values within 2 hours after the LPS injection, and then the difference between the saline and LPS treatments got smaller as time went on; serum IL-6 reached its highest concentration 2 hours after LPS administration. The magnitude of LPS-induced upregulation of gene expression was the highest for IL-6, followed by IL-1ß and IL-8, and tumor necrosis factor-α was the least affected. CLINICAL RELEVANCE: The temporal and quantitative profile of these inflammatory mediators generated from this study provides valuable information in identifying the optimal time window and appropriate biomarkers for LPS-induced inflammation, which has significant implications in evaluating the effects of interventions on the immune system of chickens.


Assuntos
Galinhas , Citocinas , Lipopolissacarídeos , Baço , Animais , Lipopolissacarídeos/farmacologia , Baço/efeitos dos fármacos , Baço/metabolismo , Citocinas/genética , Citocinas/metabolismo , Galinhas/imunologia , Galinhas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/imunologia
18.
J Virol ; 97(11): e0132223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882519

RESUMO

IMPORTANCE: Chickens immunized with the infectious laryngotracheitis chicken embryo origin (CEO) vaccine (Medivac, PT Medion Farma Jaya) experience adverse reactions, hindering its safety and effective use in poultry flocks. To improve the effect of the vaccine, we sought to find a strategy to alleviate the respiratory reactions associated with the vaccine. Here, we confirmed that co-administering the CEO vaccine with chIL-2 by oral delivery led to significant alleviation of the vaccine reactions in chickens after immunization. Furthermore, we found that the co-administration of chIL-2 with the CEO vaccine reduced the clinical signs of the CEO vaccine while enhancing natural killer cells and cytotoxic T lymphocyte response to decrease viral loads in their tissues, particularly in the trachea and conjunctiva. Importantly, we demonstrated that the chIL-2 treatment can ameliorate the replication of the CEO vaccine without compromising its effectiveness. This study provides new insights into further applications of chIL-2 and a promising strategy for alleviating the adverse reaction of vaccines.


Assuntos
Galinhas , Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Interleucina-2 , Células Matadoras Naturais , Linfócitos T Citotóxicos , Vacinas Virais , Animais , Administração Oral , Galinhas/imunologia , Galinhas/virologia , Túnica Conjuntiva/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/veterinária , Doenças Respiratórias/virologia , Linfócitos T Citotóxicos/imunologia , Traqueia/virologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
19.
Microbiol Spectr ; 11(4): e0098323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404171

RESUMO

Duck plague virus (DPV) is a member of Alphaherpesvirus genus and poses a major threat to waterfowl breeding. Genetic engineered vaccines that are capable of distinguishing naturally infected from vaccine-immunized animals are useful for eradicating duck plague. In this study, reverse genetics was used to develop an ICP27-deficient strain (CHv-ΔICP27), and its potential as a marker vaccination candidate was evaluated. The results showed that the CHv-ΔICP27 generated in this study exhibited good genetic stability in vitro and was highly attenuated both in vivo and in vitro. The level of neutralizing antibody generated by CHv-ΔICP27 was comparable to that induced by a commercial DPV vaccine, suggesting that it could protect ducks from virulent DPV attack. By using molecular identification techniques such as PCR, restriction fragment length polymorphism, immunofluorescence, Western blotting, and others, it is possible to differentiate the CHv-ΔICP27 from wild-type strains. Moreover, ICP27 can also be a potential target for the genetic engineering vaccine development of alphavirus or perhaps the entire herpesvirus family members due to the highly conservative of ICP27 protein in all herpesvirus family members. IMPORTANCE The development of distinguishable marker vaccines from natural infection is a key step toward eradicating duck plague. Here, we generated a recombinant DPV that carries an ICP27 deletion marker that could be easily distinguished from wild-type strain by molecular biological methods. It was highly attenuated in vitro and in vivo and could provide comparable protection to ducks after a single dose of immunizations, as commercial vaccines did. Our findings support the use of the ICP27-deficient virus as a marker vaccine for DPV control and future eradication.


Assuntos
Patos , Enterite , Doenças das Aves Domésticas , Vacinas Virais , Enterite/imunologia , Enterite/prevenção & controle , Enterite/veterinária , Enterite/virologia , Proteínas Virais/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Animais
20.
Front Immunol ; 14: 1185232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261344

RESUMO

The present study investigated the expression of cytokines and cellular changes in chickens following vaccination with irradiated avian pathogenic Escherichia coli (APEC) and/or challenge. Four groups of 11-week-old pullets, each consisting of 16 birds were kept separately in isolators before they were sham inoculated (N), challenged only (C), vaccinated (V) or vaccinated and challenged (V+C). Vaccination was performed using irradiated APEC applied via aerosol. For challenge, the homologous strain was administered intratracheally. Birds were sacrificed on 3, 7, 14 and 21 days post challenge (dpc) to examine lesions, organ to body weight ratios and bacterial colonization. Lung and spleen were sampled for investigating gene expression of cytokines mediating inflammation by RT-qPCR and changes in the phenotype of subsets of mononuclear cells by flow cytometry. After re-stimulation of immune cells by co-cultivation with the pathogen, APEC-specific IFN-γ producing cells were determined. Challenged only birds showed more severe pathological and histopathological lesions, a higher probability of bacterial re-isolation and higher organ to body weight ratios compared to vaccinated and challenged birds. In the lung, an upregulation of IL-1ß and IL-6 following vaccination and/or challenge at 3 dpc was observed, whereas in the spleen IL-1ß was elevated. Changes were observed in macrophages and TCR-γδ+ cells within 7 dpc in spleen and lung of challenged birds. Furthermore, an increase of CD4+ cells in spleen and a rise of Bu-1+ cells in lung were present in vaccinated and challenged birds at 3 dpc. APEC re-stimulated lung and spleen mononuclear cells from only challenged pullets showed a significant increase of IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. Vaccinated and challenged chickens responded with a significant increase of IFN-γ+CD8α+ T cells in the lung and IFN-γ+TCR-γδ+ cells in the spleen. Re-stimulation of lung mononuclear cells from vaccinated birds resulted in a significant increase of both IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. In conclusion, vaccination with irradiated APEC caused enhanced pro-inflammatory response as well as the production of APEC-specific IFN-γ-producing γδ and CD8α T cells, which underlines the immunostimulatory effect of the vaccine in the lung. Hence, our study provides insights into the underlying immune mechanisms that account for the defense against APEC.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Animais , Galinhas , Feminino , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Aerossóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA